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Abstract

Computational models of particle dynamics often exchange solution data with discretized

continuum-fields using interpolation functions. These particle methods require a series expansion

of the interpolation function for two purposes: numerical analysis used to establish the model’s

consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid.

This report presents discrete-expansions for two linear interpolation functions commonly used

within triangular and tetrahedral cell geometries. Discrete-expansions, which are similar to a

multi-variable Taylor’s series, account for interpolation discontinuities across cell boundaries and

are, therefore, valid throughout a discretized domain. Application of linear discrete-expansions

for numerical analysis and localization within particle methods is outlined and discussed.

Verification of linear discrete-expansions is demonstrated on a simple test problem.
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Integrating Linear Interpolation Functions
Across Triangular and Tetrahedral Cell Boundaries

Introduction

Particle methods, computational models of particle dynamics, are often solved

concurrently with discretized continuum-field equations. Interactive particle methods, including

models of liquid sprays, bubble dynamics, and material-interface tracking, strongly couple the

governing equations through the bilateral exchange of mass, momentum, and energy. In contrast,

reactive particle methods, including models of atmospheric transport, porous-media diffusion,

and transient mixing, weakly couple the governing equations; reactive particles simply respond to

the entraining continuum field. Another reactive method, used extensively for solution

visualization, free-surface tracking, and front tracking, is the tracer-particle method which advects

a massless particle with an interpolated velocity. Both interactive and reactive particle methods

exchange data with discrete fields using interpolation functions. The focus of this research was on

the role of two linear interpolation functions commonly used within particle methods.

Particle methods often use interpolation functions directly to evaluate terms in their

governing equations. A Taylor’s series of the interpolation function, expanded from the particle’s

cell, is required to perform analytical studies of these numerical methods. The numerical analyses

include establishing the model’s mathematical consistency and numerical accuracy. The particle’s

equations, including kinematic equations-of-motion, are often numerically integrated using multi-

step methods such as Runge-Kutta methods. The interpolated quantities within the particle’s

discretized governing equations may be evaluated in a neighboring cell, and the required

interpolation expansion would then extend through multiple cells in the grid. Derivatives of

interpolation functions, however, are generally not continuous across cell boundaries and,

therefore, a Taylor’s series is not valid in this situation. An alternative expansion for linear

interpolation functions is required to complete numerical analyses for these particle methods.

Particle methods also often use interpolation functions indirectly to evaluate particle-grid

connectivity data: the identity of the grid cell in which the particle resides and the particle’s

logical-coordinate position vector relative to that cell. Particle localization establishes this data

using cell-searching and logical-coordinate evaluation methods [1-7]. Cell-searching methods

typically use the particle’s logical coordinates to both direct and halt the search. Logical-

coordinate evaluation involves transforming a physical-space position vector into a local

coordinate system, and, as described below, existing methods are based on interpolation

expansions. Particle methods, therefore, require interpolation expansions for numerical analysis

and localization, and the mathematical expression required for both purposes is identical.
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While multi-cell Taylor’s series of interpolation functions are generally not valid for

numerical analyses, modified versions of these expansions are used for particle localization. For

spatial-transformation, the arguments of the interpolation function are logical-coordinate and cell-

vertex coordinate vectors. Existing logical-coordinate evaluation methods, generalized in

Reference [1] for various cell geometries, were developed from a truncated, single-variable

Taylor’s series expansion of the interpolation function [1,3,5-7]. The modified Taylor’s series

avoids discontinuous interpolation derivatives across cell boundaries by ignoring the function’s

dependence on cell-vertex coordinates. Furthermore, non-linear spatial-transformation problems

are linearized by only considering the interpolation function’s first-order dependence on logical

coordinates. The iterative solution of the resulting system of equations is, however, neither

algorithmically robust nor computationally efficient. An alternative expansion for linear

interpolation functions is required for robust and efficient particle localization methods.

An alternative type of expansion, a discrete-expansion, was recently proposed and

validated for multi-linear interpolation functions [8-12]. Discrete-expansions are similar to multi-

variable expansions but, unlike a Taylor’s series, they are valid throughout a discretized domain.

Discrete-expansions are valid for numerical analyses since they acknowledge the full functional

dependence of interpolation and account for discontinuous derivatives across cell boundaries.

Furthermore, the solution of discrete-expansions for logical-coordinate evaluation is both

algorithmically robust and computationally efficient. Using a simple finite-difference technique, a

single discrete-expansion was developed for trilinear interpolation defined within three-

dimensional hexahedral cells [8,9]. Multiple discrete-expansions were recently developed for

linear and bilinear interpolation functions defined within triangular [10,11] and quadrilateral cells

[10,12]. These two-dimensional expansions were developed using a total-differential technique.

This report presents the development of discrete-expansions for linear interpolation

defined within three-dimensional tetrahedral cell geometries. This report is will also show that

these new discrete-expansions are identical to those for triangular cells; linear interpolation in

two-dimensions is a subset of the three-dimensional problem. The development effort and

discussion will, therefore, focus on three-dimensional linear interpolation. Finally, the unique

formulations and characteristics of discrete-expansions for linear interpolation will also be

identified. This report continues by parametrically integrating the linear interpolation function’s

total-differential between two particles located in separate, non-contiguous grid cells. Application

of the new interpolation expansions for numerical analysis or localization within particle methods

is beyond the scope of this report. The utility of linear discrete-expansions for these purposes,

however, is outlined and discussed, and a summary concludes this report. An appendix then

presents a test problem, which clearly demonstrates the new discrete-expansions validity.
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Linear Interpolation

Three-dimensional computational space is frequently discretized into tetrahedral cells,

particularly around complex geometries. Linear functions are often applied within these cells for

data interpolation and spatial-transformation. Interpolation produces a continuous mapping of

discrete data, often located at cell-vertices, to any position within the cell. Spatial transformation

includes mapping cell geometries from a physical-space, , to a logical-space,

, coordinate system; see Figure 1. The linear function is dependent upon both 

and the cell-vertex (cv) coordinate vector, , as presented in Equation 1.

(1)

Equation 1 is linear with respect to both the logical-coordinates, , and cell-vertex

coordinates, . While the physical coordinates of the tetrahedral’s vertices are arbitrary, the

transformed or logical-coordinates are bound by , , , and . Linear

interpolation within two-dimensional triangular cell geometries may be obtained from Equation 1

by setting . Similarly, linear interpolation within one-dimensional line-elements may be

obtained from Equation 1 by setting .

Total Differential

Using the interpolation function, , the objective is to establish a relationship

between the finite change of the physical coordinates, , the logical coordinates, , and the

cell-vertex coordinates, . The function’s total-differential provides a relationship between

infinitesimal changes of these coordinates, , as presented in Equation 2.

(2)

Integration of Equation 2 between two particle end-states will provide the relationship

, which functionally represents a discrete-expansion for interpolation.

Logical Coordinate Derivative
The linear interpolation function’s total-differential includes two first-order derivatives or

transformation matrices that are scaled by differential-coordinate vectors. The first derivative in
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Equation 2 represents a coordinate-transformation or Jacobian matrix, . The Jacobian

matrix’s square structure is defined in Equation 3 for a three-dimensional transformation.

(3)

The size of the Jacobian matrix is determined by the number of spatial dimensions.

Elements of the coordinate-transformation matrix are most easily defined using column vectors.

For three-dimensional linear interpolation, these derivatives are presented in Equation 4.

(4)

Each derivative within Equation 4 is a linear function of the cell-vertex coordinates. The

Jacobian matrix for three-dimensional linear interpolation, which combines these column vectors,

is, therefore, a linear function with respect to : .
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(5)
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be partitioned into sub-matrices, each of which is associated with a single cell-vertex position.

One sub-matrix, associated with any cell-vertex number ‘v’, is presented in Equation 6.

(6)

The square structure and size of each partition within the geometry-transformation matrix

are similar to the Jacobian matrix, Equation 3. In contrast to the full Jacobian matrix, however,

each of the sub-matrices within  are diagonal as presented in Equation 7.

(7)

The non-zero elements of the sub-matrices within  are most easily defined for

each cell-vertex position. These elements, , , and , are the basis functions

used within the three-dimensional linear interpolation function as presented in Equation 8.
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function. The derivatives within Equation 8 are linear functions of the logical-coordinates. The

geometry-transformation matrix for three-dimensional linear interpolation, which combines these

column vectors, is, therefore, a linear function with respect to : .

Since linear interpolation is linear with respect to both  and , the transformation

matrices, first-order derivatives, are functions of only one variable; the coordinate-transformation

matrix is only a function of  and the geometry-transformation matrix is only a function of .

The linear interpolation function’s simplified total-differential is presented in Equation 9.

(9)

Integration Method

The objective is to integrate the linear function’s total-differential, Equation 9, to obtain a

discrete-expansion for interpolation: . The integration limits are two particles

located in separate grid cells: State 1, , and State 2, . The

computational sub-domains in which the particles reside are not desired to be connected in

physical-space. Integration of the total-differential is represented in Equation 10.

(10)
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integration cross a cell boundary, solution of Equation 10 is more complex.
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integrating the total-differential through two unique coordinate systems. While the form of the

interpolation expression is identical for each cell, the two functions are different; they have

distinct cell-vertex coordinate vectors. Along their common cell-edge, linear interpolation

functions are continuous but their derivatives are generally discontinuous. Direct integration of

the total-differential is, therefore, not possible along any pathline that crosses a cell boundary.
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Discrete-expansions may be obtained from Equation 10 if the integration pathline is partitioned or

if the integration coordinate-space is appropriately parameterized.

An integration pathline that passes between adjoining cells may be partitioned into two

line-segments, each defined within a separate coordinate system. The integrals within Equation

10 are similarly partitioned into cell-based segments along which the interpolation derivatives are

guaranteed to be continuous. Integration along this two-segment pathline would proceed within

the first cell from State 1 to the common cell edge, then within the second cell to State 2. While

this procedure represents a valid method of solution for Equation 10, it is algorithmically complex

and computationally expensive. Furthermore, if the particle end-states are located within non-

contiguous grid cells, this solution method is prohibitively complex and expensive.

Parameterization
Alternatively, the coordinate-space between the limits of integration can be parameterized.

Parameterization removes the concept of multiple coordinate systems and, thus, discontinuous

interpolation derivatives across cell boundaries, by creating a single coordinate-space between

two particles. The integration end-states can then be defined within any two cells, including non-

contiguous cells. While the form of the parameterization function is arbitrary, it must be

differentiable; it is embedded within the parameterized interpolation function. Derivatives of the

parameterized interpolation function are then guaranteed to be continuous. The parameterized

total-differential, therefore, may be integrated without requiring a partitioned pathline.

To create a single coordinate-space between two particles, each of the physical, logical,

and cell-vertex coordinates must be parameterized; particle states are a collection of these vectors.

A simple linear technique using the variable ‘s’, where , was selected in this research.

The parameterized coordinates, ,  and , then vary linearly along any integration

pathline. Integration limits for the parameterized total-differential are the bounding limits of the

variable ‘s’. Integration of the parameterized total-differential is represented in Equation 11.

(11)
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States 1 and 2. The only restriction on the limits of integration are that the end-state variables
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parameterization function, however, does not prescribe the shape of the integration pathline.

Three pathlines, commonly used for parameterized integration problems, were selected by this

research to solve Equation 11: direct, upper-step, and lower-step integration pathlines.

Direct Integration Pathline
The first integration pathline used to solve Equation 11 is a straight or direct line between

particle States 1 and 2; see Figure 2. The parameterized coordinates, which reduce to the particle

end-state coordinates at the bounding limits of integration, are presented in Equation 12.

(12)

Solution of Equation 11 along the direct integration pathline is represented in Equation 13,

where the interpolation derivatives are appropriately labeled.

(13)

Since the parameterized coordinates are linear functions, their derivatives are constant

finite-difference vectors: , , and . These

difference vectors are defined between particle States 1 and 2: , ,

and . Integration of the parameterized total-differential along the direct

pathline can then be simplified as presented in Equation 14.
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, are formed by substituting  and  from Equation 12 into Equations 4
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State 1 State 2→ : X s( ) 1 s–( ) X1 s( ) X2+=

ξ s( ) 1 s–( ) ξ1 s( ) ξ2+=

X
cv

s( ) 1 s–( ) X1
cv

s( ) X2
cv

+=

X s( )∂
s∂

--------------
1 2→

sd
0

1

∫ X∂
ξ∂

------- X
cv

s( )( )
1 2→

ξ s( )∂
s∂

-------------
1 2→

sd
0

1

∫=

X∂

X
cv

∂
-------------- ξ s( )( )

1 2→

X
cv

s( )∂
s∂

-------------------
1 2→

sd
0

1

∫+

X s( )∂ s∂⁄ ∆X= ξ s( )∂ s∂⁄ ∆ξ= X
cv

s( )∂ s∂⁄ ∆X
cv

=

∆X X2 X1–= ∆ξ ξ 2 ξ1–=

∆X
cv

X2
cv

X1
cv

–=

∆X sd
0

1

∫ X∂
ξ∂

------- X
cv

s( )( )
1 2→

∆ξ sd
0

1

∫ X∂

X
cv

∂
-------------- ξ s( )( )

1 2→

∆X
cv

sd
0

1

∫+=

X∂ X
cv

s( )( ) ξ∂⁄
X∂ ξ s( )( ) X

cv
∂⁄ ξ s( ) X

cv
s( )

ξ1 ξ2 X1
cv

X2
cv



LA-UR-00-3332

9

(15)

The linear discrete-expansions within Equation 15 are similar to a Taylor’s series of a

linear function: they are combinations of scaled derivatives and have a limited number of terms;

for linear interpolation, only first-order derivatives are non-zero. Arguments for the

transformation matrices are either particle end-state coordinates or the averages:

 and . The interpolation derivatives are scaled by finite-

difference vectors of the logical-coordinates and cell-vertex coordinates:  and .

Upper-Step Integration Pathline
The second integration pathline used to solve Equation 11 is comprised of two line-

segments between particle States 1 and 2. The first pathline segment is a line of constant  from
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and cell-vertex coordinates defined at State 2: . The second pathline segment is

a line of constant  from State A to State 2. These two pathline segments form an upper-step

within the  plane. The parameterized coordinates are presented in Equations 16 and 17.
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 The upper-step integration pathline does not constitute cell-based partition of the original,

non-parameterized total-differential, Equation 10. Instead, the upper-step pathline is used to

integrate the parameterized total-differential, which is not dependent upon cell-based coordinate

systems. Integration of the non-parameterized total-differential, Equation 10, can be rewritten to

simulate the upper-step integration pathline as presented in Equation 18.

(18)

Parameterization of Equation 18, the upper-step integration pathline, is represented in

Equation 19, where the interpolation derivatives are appropriately labeled.

(19)

Along each segment of the upper-step integration pathline, one of the coordinate variables
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where  is held constant,  and . Along the entire upper-step

pathline . Integration of the parameterized total-differential along the upper-step

pathline can then be simplified as presented in Equation 20.

(20)
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 and  from Equations 16 and 17 into Equations 4 and 8. Solution of Equation 20 is
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(21)

The linear discrete-expansion within Equation 21 is a combination of scaled first-order

interpolation derivatives. Within Equation 21, the coordinate-transformation matrix, , is

evaluated with a cell-vertex coordinate vector defined at ; the logical-coordinates vary along

the pathline segment where  is fixed at State 2. Similarly, within Equation 21 the geometry-

transformation matrix, , is evaluated with a logical-coordinate vector defined at ; the

cell-vertex coordinates vary along the pathline segment where  is fixed at State 1. Application of

this linear discrete-expansion, obtained by integrating along the upper-step pathline, for numerical

analysis and localization within particle methods will be discussed and outlined below.

Lower-Step Integration Pathline
The third integration pathline used to solve Equation 11 is similar to the upper-step

pathline. This final pathline alternative is also comprised of two line-segments between particle

States 1 and 2. The first pathline segment is a line of constant  from State 1 to State B; see

Figure 2. State B is a collection of logical-coordinates defined at State 2 and cell-vertex

coordinates defined at State 1: . The second pathline segment is a line of

constant  from State B to State 2. These two pathline segments form a lower-step within the

 plane. The parameterized coordinates are presented in Equations 22 and 23.

(22)

(23)

 Integration of the non-parameterized total-differential, Equation 10, can be rewritten to

simulate the lower-step integration pathline as presented in Equation 24.
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(24)

Parameterization of Equation 24, the lower-step integration pathline, is represented in

Equation 25, where the interpolation derivatives are appropriately labeled.

(25)

Along each segment of the lower-step integration pathline, one of the coordinate variables

is held constant; the derivative of this parameterized coordinate is the null vector. Along the first

pathline segment from State 1 to State B, where  is held constant,  and

. Alternately, along the second pathline segment from State B to State 2, where

 is held constant,  and . Along the entire lower-step

pathline . Integration of the parameterized total-differential along the lower-step

pathline can then be simplified as presented in Equation 26.

(26)

The parameterized transformation matrices in Equation 26 are formed by substituting

 and  from Equations 22 and 23 into Equations 4 and 8. Solution of Equation 26 is

then straightforward, and many expansions may be obtained. The single discrete-expansion most

easily obtained using the lower-step integration pathline is presented in Equation 27.
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derivatives are evaluated at opposite particle end-states; the upper-step and lower-step integration

pathlines are mirror images of each other. Within Equation 27, the coordinate-transformation

matrix is evaluated at  and the geometry-transformation matrix is evaluated at .

The discrete-expansions in Equations 15, 21, and 27, developed for tetrahedral cells, are

identical to the expansions developed for triangles and line-elements; linear interpolation within

these two and one-dimensional geometries is a subset of the three-dimensional function. All of

these linear discrete-expansions are a simplification of the trilinear [8,9] and bilinear expansions

[10,12]; linear interpolation is more simple than a multi-linear function. Furthermore, the upper-

step discrete-expansion within Equation 21 is the linear version of the trilinear expansion which

was obtained using the finite-difference method. The total-differential and finite-difference

methods, therefore, produce identical discrete-expansions for similar interpolation functions.

However, unique discrete-expansion formulations are possible for linear interpolation; the

transformation matrices are easily manipulated since they are linear functions of  and . Two

expansions in Equation 15 include transformation matrices that are evaluated at the identical

particle end-state. A second Jacobian matrix, evaluated with , also appears in these

expansions. The form of these two expansions is not repeated in the multi-linear solutions.

Furthermore, these direct-pathline expansions are related to the other linear discrete-expansions;

they are equivalent to the upper-step and lower-step expansions in Equations 21 and 27.

Additional discrete-expansions for linear interpolation, beyond the five presented in this

report, might be possible using either the total-differential or the finite-difference methods. While

the finite-difference method is simple, obtaining an expansion with this technique requires

knowledge of the desired solution. In contrast, the integration of a parameterized total-differential

is mathematically well founded, and the discrete-expansions are obtained without a-priori

knowledge of the solution. Parameterization of the total-differential also transforms the multi-

variable integration process, involving each element within  and , into a one-dimensional

problem with respect to the parameterization variable. The total-differential method, therefore,

represents a general solution technique for developing discrete-expansions for interpolation.

Discussion

Particle methods require expansions of interpolation functions for both numerical analyses

and logical-coordinate evaluation. Application of the linear discrete-expansions developed herein

for these two purposes is beyond the scope of this report. Verification of the new expansions,

however, is provided in Appendix A; one of the new discrete-expansions is demonstrated to

correctly solve the general problem for two particles located in separate, non-contiguous cells.

X1
cv
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ξ X
cv
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cv
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Within the following sections, application of linear discrete-expansions for numerical analyses

and localization within particle methods is outlined and discussed.

Numerical Analysis
The goal of numerical analysis, an analytical investigation of a computational model,

includes establishing the model’s mathematical consistency and numerical accuracy. While

estimates of these measures are possible, analytical proof is preferred. A model’s consistency and

accuracy are based upon its leading-order error term, which is obtained by substituting series

expansions for all discrete-terms within the model. A Taylor’s series, however, is not a valid

expansion through coupled multi-linear interpolation functions. Instead, a discrete-expansion is

required to complete numerical analyses of computational models that use interpolation.

Numerical analyses of reactive particle methods require the discrete-expansion of a

velocity-interpolation function; these methods compute particle trajectories by interpolating from

a discrete velocity field: . All numerical analyses require that the discrete-expansion

must be written relative to a single state, defined here as State 1. Using multi-step integration

methods, however, a reactive particle’s velocity might be evaluated in a separate computational

sub-domain, defined here as State 2. The objective is then to write a discrete-expansion of the

velocity-interpolation function from State 1 to State 2: .

Any one of the above discrete-expansions may be used for numerical analysis; each

expansion is valid throughout a discretized domain. One obvious choice would be the common

discrete-expansion developed using both the finite-difference and total-differential methods. For

linear interpolation, the common discrete-expansion, the upper-step pathline expansion originally

presented in Equation 21, is repeated in Equation 28 for a velocity-interpolation function.

(28)

For numerical analysis, discrete-expansions must be defined at State 1, but Equation 28

includes an interpolation derivative defined at State 2: . Recursive application of the

discrete-expansion can transform a mixed-state interpolated velocity into a State 1 function:

. This separate single-state velocity-interpolation expansion can be

substituted into Equation 28, and the model’s numerical analysis may then be completed.

For computational models that use interpolation, discrete-expansions represent a key

advancement in the ability to analyze existing models; discrete-expansions provide the capacity to

analytically evaluate their mathematical consistency and numerical accuracy. By providing an
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analytical description of a model’s leading-order error term, discrete-expansions also provide the

capacity to develop advanced computational models; the leading-order error term of an existing

model may be used to create a new, advanced computational model.

Logical-Coordinate Evaluation
Logical-coordinate evaluation is the transformation of a physical-space position vector

into cell-based, logical-space coordinates. Interpolation functions are often used for spatial

transformation because they can provide a relationship between physical and logical coordinates.

Discrete-expansions represent the mathematical expression that allows interpolation functions to

evaluate a particle’s logical-coordinates. For linear interpolation, the discrete-expansion originally

presented in Equation 21 may be rewritten for this purpose as presented in Equation 29.

(29)

Equation 29 is valid between two particles, States 1 and 2, located in separate, non-

contiguous grid cells. For logical-coordinate evaluation, all of the coordinate vectors at State 1 are

known: ,  and . In contrast, the only coordinates known at State 2 are the physical-

coordinates of the particle: . The cell-searching portion of the localization algorithm does,

however, provide an estimate of the cell-vertex coordinates at State 2: . The only unknown in

Equation 29, therefore, is the logical-coordinate vector at State 2, , which is the desired

solution embedded within the finite-difference vector .

Equation 29 is defined between two fixed particles. State 2 is absolutely fixed, invariant

throughout the localization problem, by the particle’s physical-coordinates, . In contrast, State

1 is arbitrarily fixed; its position is constrained only by the requirement that .

Bound position vectors may then be selected for use in Equation 29 that guarantees an

algorithmically robust method. Solution of Equation 29 is also computationally efficient; all of

the interpolation derivatives are constant and only require a single evaluation. In contrast to the

multi-linear discrete-expansions, only a single solution of Equation 29 is required for logical-

coordinate evaluation since elements of  only appear within . Finally, existing evaluation

methods, which are based on Taylor’s series, may be obtained from Equation 29 if .

Summary

Five new discrete-expansions were developed for linear interpolation defined within

three-dimensional tetrahedral cell geometries. Discrete-expansions are similar to multi-variable

expansions, but unlike a Taylor’s series, they are valid throughout a discretized domain; they
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account for interpolation discontinuities across cell boundaries. The new expansions were

developed by parametrically integrating the interpolation function’s total-differential between two

particles located in separate, non-contiguous cells. The three-dimensional linear discrete-

expansions are identical to those developed for two-dimensional triangles and one-dimensional

line-elements. The linear expansions are also a simplification of multi-linear discrete-expansions,

but the linear expansions exhibit unique formulations and utilization characteristics.

For any computational model that uses interpolation, discrete-expansions represent a key

advancement; they provide the capacity to analytically define a model’s leading-order error term

and, therefore, establish the mathematical consistency and numerical accuracy of existing models.

Discrete-expansions also provide the capacity to develop advanced computational models; the

leading-order error term of an existing model may be used to a create a new, more accurate model.

Furthermore, the use of discrete-expansions for logical-coordinate evaluation provides an

algorithmically robust and computationally efficient particle localization method. Finally, linear

discrete-expansions may be simplified to obtain the existing logical-coordinate evaluation

methods, which are based upon a truncated, single-variable Taylor’s series expansion.
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Appendix A: Test Problem

The purpose of this appendix is to verify that the five discrete-expansions presented in this

report, developed for three-dimensional linear interpolation, are valid across tetrahedral cell

boundaries. The following verification has been performed for each expansion in Equations 15,

21, and 27. Within this appendix, however, only one discrete-expansion is used to solve the

general problem of two particles located in separate, non-contiguous grid cells. The expansion

selected for this demonstration, originally presented in Equation 15, is repeated in Equation A-1.

(A-1)

A particle’s state is comprised of a set of physical-coordinates, , logical-

coordinates, , and cell-vertex coordinates, . The only

restriction on particle states is that they must form a consistent set of coordinates as described by

the interpolation function: . For this demonstration, the two particle states, State 1

and State 2, are defined in Equations A-2 and A-3.

(A-2)

(A-3)

The discrete-expansion in Equation A-1 includes two first-order interpolation derivatives,

 and . Both transformation matrices are evaluated with average logical-

coordinates and average cell-vertex coordinates:  and .

For this demonstration, these average coordinate vectors are presented in Equation A-4.

(A-4)
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The first-order interpolation derivatives in Equation A-1 are scaled by the finite-difference

vectors  and . These vectors are presented in Equation A-5.

(A-5)

The Jacobian matrix in Equation A-1, , was presented in Equation 3 for three-

dimensional coordinate transformations. The elements of this matrix were defined in Equation 4.

The geometry-transformation matrix, , was presented in Equation 5. The product of this

matrix and the finite-difference vector  is presented in Equation A-6.

(A-6)

As previously noted, the non-square geometry-transformation matrix may be partitioned

into diagonal sub-matrices:  where . The non-zero elements of each sub-

matrix are identical; they are one of the four linear interpolation basis functions. Each sub-matrix

may then be defined as an identity matrix scaled by a basis function. The matrix-vector product in

Equation A-6 may then be simplified as presented in Equation A-7.

(A-7)

The derivatives and coordinate finite-difference vectors for linear interpolation, required

by each discrete-expansion presented in this report, have been defined analytically. The

interpolation derivatives were presented as a function of the vectors  and . In contrast, the

interpolation derivatives in Equation A-1 are evaluated with the average vectors  and .

These average coordinate vectors were defined in Equation A-4. The coordinate finite-difference

vectors  and  were defined in Equation A-5. The algebraic form of Equation A-1,

including matrices, vectors, scalars, and their products, is presented in Equation A-8.
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(A-8)

Equation A-8 correctly predicts the change in particle physical-coordinates between State

1 and State 2: . Any symmetry or structure exhibited in Equation A-8 is

not an inherent feature of discrete-expansions. Instead, these features are an artifact of the test

problem. This test problem clearly demonstrates that the five discrete-expansions presented in this

report are valid expansions for linear interpolation across tetrahedral cell boundaries.
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